3.6. СРАВНИТЕЛЬНАЯ ОЦЕНКА ВАРИАНТОВ РЕШЕНИЙ
3.6.1. Выбор оптимального варианта решения с помощью статистических оценок
В предыдущей главе рассматривалась сравнительная оценка вариантов решений в условиях неопределенности в зависимости от критериев эффективности.
На практике для сравнительной характеристики проектов по степени риска особенно в инвестиционно-финансовой сфере, в качестве количественного критерия широко используется, как уже указывалось, среднее ожидаемое значение результата деятельности (доход, прибыль, дивиденды и т.п.), среднее квадратическое отклонение, как мера изменчивости возможного результата, а также коэффициент вариации.
Для задачи, рассматриваемой в п. 3.2, исходные данные которой представлены в табл. 3.3, определяем основные показатели эффективности. Для стратегии Р\
Е = Е(Х) = 23300, Е(Х2) — X2 = 718930000,
йЕ = е(Х2)-(Е(Х))2 =718930000-233002 =176040000,
аЕ - Л)^ = >/176040000 = 13268, У =^^--100 = 56,9%.
23300
Для стратегии Р2.
£ = 18220, X2 =493228000, £>£=161259600, аЕ =12698, У = 69,7%. Для стратегии Р3:
Е = 21800, X 2 = 526160000, =50920000, стя =7135, У =32,7%. Эти данные сведем в табл. 3.10.
Таблица 3.10
|
Е |
а |
V |
Теплая — Р\ |
23300 |
13268 |
56,9 |
Прохладная — Р2 |
18220 |
12698 |
69,7 |
Обычная — Ръ |
21800 |
7135 |
32,7 |
Из этой таблицы однозначно можно лишь сказать, что стратегию прохладной погоды, как заведомо проигрышную, предприятие не должно рассматривать. Остается сравнить две стратегии: Л и Ръ.
Если имеются две стратегии А и В, для которых известны Ел, Ев, а а и ов, то предложение должно быть отдано стратегии^, если:
1 ,ЕА> Ев, оа = ов и УА < Ув,
2. Еа > Ев, аА<авиУА< Ув, (3.6.1)
3. Еа = Ев, аА<авиУА< У в-
Предпочтение варианту В следует отдавать при:
4. Еа < Ев, оА = ов и УА > У в,
5. Еа < Ев, стА >ав и Уа> Ув, (3.6.2)
6. Еа = Ев, оА> ав и УА> Ув-
В общем случае, когда Ел > Ев, ал > ав или Ел < Ев, оА < ав, требуются дополнительные исследованию, как и в нашей ситуации.
Заказчик может выбрать стратегию с большим ожидаемым доходом, связанным, однако, с большим риском, или стратегию с меньшим ожидаемым доходом, но более гарантированным и менее рискованным.
Можно также отдать предпочтение стратегии, которая характеризуется меньшим коэффициентом вариации Vи, как следствие, обеспечивает более благоприятное соотношение риска (<т) и дохода (Е).
Использование одного из этих двух подходов к выбору оптимальной стратегии может привести к заметным ошибочным результатам.
3.6.2. Нормальное распределение
Рассмотрим другой метод исследования, основанный на предположении о том, что большинство результатов хозяйственной деятельности (прибыль, доход и т.д.) как случайные величины подчиняются закону, близкому к нормальному. Этот закон характерен для распределения событий в случае, когда их исход представляет собой результат совместного воздействия большого количества независимых факторов, и ни один из этих факторов не оказывает преобладающего влияния.
Нормальное распределение является основным элементом большинства систем управления риском. На нем целиком основан страховой бизнес, потому что от пожара в Москве не загораются дома в Самаре, а смерть определенного человека в одном месте, как правило, не имеет отношения к смерти другого человека в другом месте и в другое время. Когда страховые компании собирают сведения о миллионах людей обоего пола всех возрастов, значения ожидаемой продолжительности жизни оказываются распределенными по нормальной кривой. В силу этого страховые компании способны с большой степенью надежности оценивать продолжительность жизни разных групп населения. Они могут не только определять ожидаемую среднюю продолжительность жизни, но и диапазоны, в которых она может колебаться из года в год. Уточняя эти оценки на основе дополнительных данных, таких, как истории болезней, число курильщиков, постоянные места проживания, профессиональная деятельность, эти компании повышают точность оценки ожидаемой продолжительности жизни.
Порой нормальное распределение дает гораздо больше важной информации, чем простые оценки представительности выборки. Нормальное распределение менее вероятно, хотя и не исключено, когда наблюдения зависимы друг от друга, то есть когда вероятность события определяется предыдущим событием. Например, если у лучника проблемы со зрением, стрелы будут ложиться слева от яблочка, т.е. центр распределения окажется сдвинутым. В подобных ситуациях распределение относительно среднего значения обычно оказывается асимметричным.
В таких случаях мы можем воспользоваться рассуждением наоборот. Если независимость событий является необходимым условием нормального распределения, можно предположить, что данные, распределение которых представлено нормальной кривой, получены на основе независимых наблюдений. Теперь мы можем поставить несколько интересных вопросов.
Насколько точно изменения курса акций на бирже подчинены законам нормального распределения? Некоторые знатоки рынка утверждают, что курс подвержен случайным колебаниям, напоминающим пошатывающегося пьяного, пытающегося ухватиться за фонарный столб. Они полагают, что у курса не больше памяти, чем у рулетки или пары костей, и что каждое наблюдение здесь независимо от предыдущего наблюдения. Сегодняшнее движение цен не зависит от того, что произошло минуту назад, вчера или позавчера.
Лучший способ решения вопроса о том, являются ли изменения курса акций независимыми событиями, заключается в сравнении колебаний курса с нормальным распределением. У нас есть веские основания утверждать, что эти колебания подчиняются нормальному закону, и в этом нет ничего удивительного. В условиях постоянной изменчивости и конкурентной борьбы на нашем рынке капитала, когда каждый инвестор стремится переиграть других, новая информация мгновенно отражается на котировках. Когда выясняется падение прибыли у General Motors или Merck объявляет о выпуске нового чудодейственного лекарства, котировки не стоят на месте в ожидании, пока инвесторы переварят информацию. Ни один инвестор не станет ждать, пока начнут действовать другие. На рынке действуют сворой, и новая информация немедленно изменит котировки акций General Motors или Merck. При этом сама новая информация поступает в случайном порядке. В силу этого изменения котировок непредсказуемы.
Интересные данные в поддержку этой точки зрения были приведены в 1950-х годах профессором Чикагского университета Гарри Робертсом. Роберте с помощью компьютера брал случайные числа из наборов с тем же средним и тем же средним квадратичным отклонением, какие наблюдались у цен на фондовой бирже. Затем он начертил диаграмму последовательной смены этих случайных чисел. Результаты оказались идентичными с результатами аналитиков рынков ценных бумаг, пытающихся предугадать движение котировок. Реальная динамика цен и динамика случайных чисел, выданных компьютером, оказались практически неразличимыми. Возможно, что и на самом деле биржевые котировки не имеют памяти.
Нормальность распределения — это жесткая проверка гипотезы случайных колебаний рынка. Но нужна одна важная оговорка. Даже если гипотеза случайных колебаний адекватно описывает ситуацию на фондовом рынке, даже если изменения котировок описываются нормальным распределением, среднее значение изменений всегда отлично от нуля. Тенденция к повышению котировок не должна нас удивлять. Состояние владельцев акций со временем растет, как и сбережения, доходы и прибыли корпораций. Поскольку по большей части котировки не падают, а растут, среднее значение их изменений оказывается положительным.
На практике для проверки предположения о нормальном распределении исследуемой совокупности случайных факторов применяются различные критерии согласия, устанавливающие соответствие между эмпирическим (опытным) и теоретическим (нормальным) распределением, и которые для задаваемой надежности (вероятности) позволяют принять или отвергнуть принятую гипотезу о нормальном законе распределения.
Нормальное распределение (распределение Гаусса) представляет собой вид распределения случайных величин, с достаточной
точностью опнсывающин распределение плотности вероятности результатов производственно-хозяйственной, финансовой, инновационной деятельности или изменений условий внешней среды, поскольку показатели, характеризующие их, определяются большим числом независимых случайных величин, каждая из которых в отдельности относительно других играет незначительную роль и непредсказуема. Применение нормального распределения для оценки рисков также связано с тем, что в основе данных, как правило, используется ряд дискретных значений. Эти теоретические предпосылки, а также апробация моделей для анализа рисков на основе нормального распределения доказывают адекватность этого теоретического инструмента реальным процессам экономической деятельности.
Плотность вероятности нормального распределения имеет вид:
(Х-Х)2
1
№=-^=е *> , (3.6.3)
<У\2я
где х = а — математическое ожидание,
а — среднее квадратическое отклонение случайной величины X.
Из курса теории вероятностей известно, что попадание случайной величины X в заданный интервал (а; /3) определяется как
|
и
'а-а^ |
Р~а |
-Ф |
(3.6.4) |
Р(а<х<р) = $№еЬ=А
|
(х-х)г
где ф(х) = [е 2°2 ах
есть интеграл вероятностей или функция Лапласа, ее значения в зависимости от параметра х приводятся в специальных таблицах, эта функция четная и она изменяется от 0 до 0,5.
Если предположить, что ожидаемое значение результата (прибыль, потери и т.д.) должны принадлежать интервалу (а; /3) длиной Л = Р - а, то вероятность того, что достигаемый результат будет находиться в указанном интервале, определяется из формулы (3.6.4) и пусть равна Р\. На графике рис. 3.7 заштрихованная площадь численно равна Р\. Тогда вероятность попадания рассматриваемого результата за пределы допустимых границ, исхо
дя из того, что вся площадь под кривой нормального распределения равна единице, будет равна Р2 — 1 - Р\.
тк
1
|
О а х-а Р Рис. 3.7. Нормальная кривая |
х
|
Вероятность Р2 оценивает неопределенность результата и отдельные авторы считают непосредственным измерителем риска величину Р2. На наш взгляд, лишь в относительно простых случаях для оценки степени риска можно использовать величину вероятности получения отрицательного результата (Р2), так как при этом не затрагиваются существенные факторы понятия риска, отсутствует сравнение возможных выигрышных исходов и обстоятельств, способствующих им, с возможными потерями в случае неудачи.
Средняя арифметическая х = а определяет центр распределения и ее размерность та же, что и размерность случайной величины X. Среднее квадратическое отклонение о определяет разброс центра распределения и размерность а совпадает с размерностью случайной величины X. На рис. 3.8 показано, как разница в значениях
ЦХ) А
О а, а2 а3 х Рис. 3.8. Изменения в значении средней арифметической |
X |
|
вой распределения. Это есть характеристика рассеивания. Наибольшая ордината кривой распределения обратно пропорциональна о; при увеличении а максимальная ордината уменьшается. Так как площадь кривой распределения всегда должна оставаться равной единице, то при увеличении с кривая распределения становится более плоской, растягиваясь вдоль оси абсцисс; напротив, при уменьшении и кривая распределения вытягивается вверх, одновременно сжимаясь с боков, и становится более иглообразной. На рис. 3.9 показаны три нормальные кривые (/, II, III) при а = 0; из них кривая I соответствует самому большому, а кривая III — самому малому значению а. Изменение параметра ст равносильно изменению масштаба кривой распределения — увеличению масштаба по одной оси и такому же уменьшению по другой.
средней арифметической влияет на положение графика, а на рис. 3.9 показано, как увеличение значения сменяет размах кривой. |
В процессе принятия управленческих решений предпримате- лю целесообразно различать и выделять определенные области (зоны риска) в зависимости от уровня возможных (ожидаемых) потерь. Для этого разработаны и используются так называемые шкалы риска, позволяющие классифицировать поведение лиц, идущих на хозяйственный риск. В табл. 3.11 приведена эмпирическая шкала риска, которую рекомендуют применять предпринимателям при использовании ими в качестве количественной оценки риска вероятность наступления рискового события авторы книги [50].
Таблица 3.11 Эмпирическая шкала допустимого уровня риска
|
Дадим математический анализ этой таблицы.
В практике общеупотребительной характеристикой рассеивания служит не среднее квадратическое отклонение о, а другая величина, называемая вероятным отклонением (иначе — «срединным отклонением» или «срединной ошибкой»).
Вероятным отклонением называется половина длины участка, симметричного относительно центра рассеивания, вероятность попадания в который равна половине.
Геометрически вероятное отклонение Е есть половина длины участка оси абсцисс, симметричного относительно центра рассеивания, на который опирается половина площади кривой распределения (рис. 3.10).
Ж
№
Рис. 3.10. |
Вероятное отклонение мы будем обозначать буквой Е. Поясним смысл термина «срединное отклонение», часто применяемого в практике вместо «вероятного отклонения». Вероя- ность того, что величина X отклонится от центра рассеяния а меньше чем на Е, по определению вероятного отклонения Е, рав- 1
на-
Р(\Х-а\<Е) = ^. (3.6.5)
Вероятность того, что это отклонение будет больше Е, также 1
равна —
Р<\Х-а\>Е) = \.
Таким образом, при большом числе опытов в среднем половина значений случайной величины Сбудет отклоняться от а больше чем на Е, а половина — меньше; отсюда и термин «срединное отклонение».
Из курса теории вероятностей известно, что вероятность того, что отклонение случайной величины X от среднего значения а по абсолютной величине не превысит положительного числа е= (Л, определяется соотношением
Р(\х-а\<е) = 2ф^у2ф(1). (3.6.6)
Очевидно, вероятное отклонение как характеристика рассеивания должно находиться в прямой зависимости от среднего квад- ратического отклонения ст. Установим эту зависимость. Для этого вычислим вероятность события |х-а\<Е в уравнении (3.6.5) по формуле (3.6.6)
|
Е |
(3.6.7) |
сгл/2 |
/ „ \
Р(\Х-а\<Е) = Ф
|
Формулы (3.6.4), (3.6.6) и (3.6.7) применяются на практике для попадания случайной величины X в заданный интервал.
Для примера вычислим вероятности попадания случайной ве-
личины X, подчиненной нормальному закону, на последовательные участки длиной Е, отложенные от центра рассеивания. По определению вероятного отклонения, вероятность попадания на участок длины Е, примыкающий к центру рассеивания, равно 0,25. Так как плотность вероятности по мере удаления от центра рассеивания убывает, то, откладывая от центра последовательные участки длиной Е, мы будем получать все меньшую и меньшую вероятность попадания (рис. 3.11). Вычислим вероятность попадания
№
|
->
а Е Е Е Е Рис. 3.11. |
О |
X
|
случайной величины на эти участки по формуле (3.6.7) с точностью до 0,01:
Р(т <Х <т+ Е) = 0,25;
Р(т + Е < X < т + 2£) = 0,16; Р(т + 2Е < X < т + ЪЕ) = 0,07; Р(т + ЪЕ < X <т + ЛЕ) — 0,02.
Складывая эти четыре числа, получаем 0,5. Из этого заключаем, что если пренебречь вероятностями менее 0,01, можно считать практически достоверным, что случайная величина, подчиненная нормальному закону, отклоняется от центра рассеивания не более чем на четыре вероятных отклонения. Строго говоря, такие отклонения все же возможны и встречаются примерно в 0,5% всех случаев (в ту и другую сторону).
Используя соотношение (3.6.6) и выбирая вероятности из табл. 3.11, по таблицам функции Лапласа Ф(/) находим соответствующие значения параметра I (табл. 3.12).
Таблица 3.12 Таблица значений вероятностей и параметра і
|
Наносим значения е = ог на график нормальной кривой влево
и вправо от х = а и строим зоны риска (не нарушая общности, значения £ откладываются только вправо) (рис. 3.12).
А
О а а+с а+2о а+Зо х Рис. 3.12. Зоны риска для кривой нормального распределения вероятностей |
Кривую представленную на рис 3.12, можно называть кривой риска. На ней выделены следующие характерные точки и зоны.
Первая точка определяет вероятность нулевых потерь, ее можно считать максимальной, но, конечно, меньше единицы.
Вторая точка вероятности нежелательного исхода, соответствует «нормальному», «разумному» риску, при котором рекомендуется принимать обычные предпринимательские решения. Зона приемлемого (минимального) риска характеризуется уровнем потерь, не превышающим размера чистой прибыли. Третья точка характеризуется величиной возможных потерь, равной ожидаемой прибыли, т.е. полной потери прибыли. Зона допустимого (повышенного) риска характеризуется уровнем потерь, не превышающим размеры расчетной прибыли. Осторожные предприниматели стараются действовать так, чтобы возможная величина потерй не выходила за пределы допустимого риска.
Четвертая точка соответствует величине потерь, равных расчетной выручке. Зона критического риска характеризуется тем, что в границах этой зоны возможны потери расчетной прибыли, т.е. есть опасность потерять и средства, вложенные предпринимателем в операцию.
Пятая точка характеризуется потерями, равными имущественному состоянию предпринимателя. Зона катастрофического (недопустимого) риска характеризуется тем, что в границах этой зоны ожидаемые потери способны превзойти размер ожидаемых доходов от операций и достичь величины, равной всему имущественному состоянию предпринимателя (фирмы).
Принятие решений с большим уровнем риска зависит от склонности ЛПР. Однако, принятие таких решений возможно только в случае, если наступление нежелательного исхода не приведет предпринимателя к банкротству.
Рассмотренным точкам риска соответствуют следующие значения вероятностей:
Р\ < 0,1; Р2 = 0,25; Р3 = 0,4; Р4 = 0,75; Р5 > 0,75.
Вероятности определенных уровней потерь являются важными показателями, позволяющими высказывать суждение об ожидаемом риске и его приемлемости, поэтому построенную кривую и можно назвать кривой риска. Так, если вероятность катастрофической потери выражается показателем, свидетельствующим об ощутимой угрозе потери всего состояния, то осторожный предприниматель заведомо откажется от такого дела и не пойдет на подобный риск.
Знание предельных значений вероятностей возникновения допустимого Ру, критического Лф и катастрофического Ркат рисков позволяет сформулировать самые общие условия приемлемости анализируемого вида предпринимательства:
• показатель допустимого риска не должен превышать предельного значения, т.е. Р3 < Рс;
• показатель критического риска должен быть меньше предельной величины, т.е. Р4 < Ркр;
• показатель катастрофического риска не должен быть выше предельного уровня, т.е. Р5 < Лф..
3.6.4. Выбор оптимального решения с помощью доверительных интервалов
Если результаты экономической деятельности подчиняются нормальному закону распределения вероятностей, то в этом случае имеет место, так называемое, правило трех сигм, которое в более широкой постановке позволяет установить область возможных значений случайной величины X как
Е-т<Х <Е+ю, (3.6.8)
где величина I характеризует доверительную вероятность попадания случайной величины Хв интервал (Е - Е + ю), а Е = х = а — среднее случайной величины X.
При / = 1 с вероятностью 0,6826 (или в 68% случаев) можно утверждать, что значение случайной величины лежит в пределах Е ± о; при / =2 с вероятностью 0,9544 можно утверждать, что хе (Е - 2 о, Е + 2 о); и при 1 = 3 вероятность того, что значение случайной величины х е (Е - Зет, Е + За); составляет 0,9973, т.е. это событие практически достоверно.
Для пояснения сказанного рассмотрим три ситуации: ситуация 1, ситуация 2, ситуация — стратегия предприятия (табл. 3.10), которые характеризуются параметрами, приведенными в табл. 3.13.
Таблица 3.13
|
Для наглядности результаты табл. 3.13 изобразим графически на рис. 3.13 а,б, в. На графиках по оси I отложены значения 0,1,2,3, а по оси ординат ОЕ отложены значения (Е - /о).
О 1 2 3 Г Рис. 3.13. Зависимость ожидаемого результата от параметра I |
Величину Етт = Е-П7назовем минимальным значением ожидаемого результата (отдачей). Из рис. 3.13 а видим, что в ситуации 1 стратегия А обеспечивает более высокое минимальное значение отдачи при всех уровнях доверительной вероятности. Поэтому выбор стратегии А является более предпочтительным, чем выбор стратегии В, хотя и УА> ¥в-
Рассмотрим ситуацию 2. Если использовать коэффициент вариации, то следует выбрать стратегию В. Из зависимости минимальных значений отдачи (рис 3.13 6) для стратегии А к В при различных * видно, что при доверительной вероятности, не превышающей 0,9544, которой соответствует 1 = 2, оптимальной является стратегия А, в противном случае предпочтение следует отдать стратегии В.
Из взаимного положения прямых Р\ и Рз, представленных на рис. 3.13 в, можно сделать вывод, что при доверительной вероятности, не превышающей 0,251, которой соответствует значение / = 0,32, наиболее эффективной является стратегия Р\ и при доверительной вероятности больше 0,251 предпочтительнее стратегия Р3.
Предприниматель, понимая, что риск неизбежен, стремится учитывать риск в своей работе, руководствуясь идеей, что требуемая доходность и риск должны изменяться в одном направлении (пропорционально друг другу). Если риск является вероятным, то его количественное измерение не может быть однозначным и предопределенным и его величина может меняться в зависимости от метода определения риска.
Результаты практической реализации прошлых аналогичных решений, принятых в условиях неопределенности, подсказывают ЛПР тактику поведения. Понесенные потери диктуют выбор осторожной политики, успех же побуждает к риску. Большинство людей предпочитает малорискованные варианты действий. Вместе с тем, отношение к риску во многом зависит от величины капитала, которым располагает предприниматель.
При анализе альтернативных вариантов решений ЛПР приходится прогнозировать возможные последствия принимаемых решений. Наиболее благополучной при этом является такая ситуация, когда руководитель достаточно точно может оценить результаты каждого из альтернативных вариантов решения. Примером могут служить инвестиции в депозитные сертификаты и в государственные облигации, когда имеется государственная гарантия и точно известно, что на вложенные средства будет получен оговоренный в условиях процент.
Если нельзя оценить вероятности возможных результатов, то рассмотрение решений с известной вероятностью получения любого результата относится к рисковым случаям. Когда требующие анализа и учета факторы весьма сложны, а достоверной или достаточной информации о них нет, то вероятность того или иного результата невозможно предсказать более или менее точно. Неопределенность характерна для многих решений, принимаемых в быстро меняющихся обстоятельствах. В этом случае предприниматель пытается получить дополнительную информацию, еще раз проанализировать проблему и, следовательно, учесть ее новизну и сложность, сочетая информацию и результаты анализа с накопленным опытом. Привлечение к этой работе специалистов для составления экспертных оценок является иногда решающим.
Если времени на сбор дополнительной информации мало или затраты на нее очень велики, то целесообразно действовать в соответствии с прошлым опытом и интуицией. По мере увеличения уязвимости бизнеса от финансовых рисков многие компании и предприниматели понимают, что поиск решений проблем риска должен быть поставлен на профессиональную основу, т.е. риском нужно профессионально управлять.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Наверх ↑