1.2. Поняття моделі. Коротка класифікація моделей математичного програмування.
Оскільки математичні методи не можуть застосовуватися безпосередньо до досліджуваного об'єкта, необхідною є побудова адекватної цьому об’єкту математичної моделі.
Під моделлю об'єкта (явища, системи) будемо розуміти деяку штучну систему (фізичну або абстрактну), що спрощено відбиває структуру й основні закономірності розвитку реального об'єкта так, що її вивчення подає інформацію про стан і поведінку самого досліджуваного об'єкта.
Основними ознаками, за якими моделі математичного програмування поділяють на класи, є: характер функцій у складі моделі, тип змінних, врахування фактору часу та випадкових факторів
В залежності від характеру функцій, що входять до складу моделі, задачі МП можуть бути лінійними або нелінійними. Якщо цільова функція і функції всіх обмежень моделі є лінійними, то дана задача являє собою задачу лінійного програмування (ЗЛП). В інших випадках, якщо хоча б одна функція в складі моделі є нелінійною, маємо справу із задачею нелінійного програмування (ЗНЛП). Зазначимо, що для ЗЛП розроблені універсальний і ціла низка часткових методів розв’язання. Навпаки, лише незначна частина ЗНЛП (а саме, задачі опуклого програмування) може бути ефективно розв’язанана частковими методами.
За типом змінних розрізняють задачі МП з неперервними та дискретними змінними. Останні створюють окремий клас задач дискретного програмування, підкласом якого є задачі цілочисельного програмування.
За фактором часу задачі математичного програмування поділяють на статичні та динамічні.
Нарешті, в залежності від того, якими є параметри моделі, - постійними чи імовірнісними величинами, - розрізняють ЗМП детерміновані та стохастичні.
Коротка класифікація моделей математичного програмування представлена на рис. 1.1.
Рис. 1.1. Класифікація моделей математичного програмування.
25 26 27 28 29 30 Наверх ↑