Тема 43. Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні.

Питання теми

Довжина дуги кривої в декартових і полярних координатах

Площа поверхні

Площа поверхні обертання

Площа циліндричної поверхні

 

10.3. Довжина дуги

Це питання для кривої , заданої рівнянням , вже розглядалося в п.9.1. Там була знайдена формула

  (10.9)

Якщо крива задана параметрично, тобто у вигляді  то

  (10.10)

Для просторової кривої, заданої параметрично , довжина дуги обчислюється за формулою

 (10.11)

аналогічно формулі (10.10). Виведення цієї формули базується на розгляді елемента  дуги, кінці якої збігаються з кінцями діагоналі паралелепіпеда, а саме, діагональ є хордою елемента дуги.

У випадку задання кривої в полярній системі координат  , матимемо

  (10.12)

Пропонується вивести цю формулу, узявши до уваги, що рівняння кривої в полярних координатах можна записати як параметричні з параметром q :

 

і використавши формулу (10.10).

Приклад 1. Обчислити довжину кривої, заданої рівнянням  .

Р о з в ‘ я з о к. Досить обчислити довжину дуги, що обмежує зверху заштриховану на рис.10.7 фігуру, а потім помножити її на 8. Користуючись формулою (10.12), одержимо

10.4. Площа поверхні

10.4.1. Площа поверхні обертання

Довжина дуги, що обмежує смужку зверху (рис.10.9),

Ця дуга в разі обертання утворить поверхню обертання, площа якої дорівнюватиме бічній поверхні конуса, який має висоту , а радіуси основ його . Тоді площа поверхні цього конуса нескінченно малої висоти

Нескінченно малою вищого порядку нехтуємо і в результаті одержимо  звідки

  (10.7)

10.4.2. Площа циліндричної поверхні

На рис. 10.10 зображено циліндричну поверхню з твірними, паралельними осі . Нехай ця поверхня задана рівняннями

 

 Рис.10.9 Рис.10.10

 

Виділивши смужку так, як показано на рис. 10.10 , знайдемо її площу

  (10.8)

Зауваження 1. При одержанні формул (10.1) – (10.2), (10.4) – (10.8) виділені елементи фігур вважалися прямокутниками (див. рис. 10.1, 10.4,10.5 ), сектором з центральним кутом  ( рис. 10.2), тонким циліндричним шаром (рис. 10.3), що не вплинуло на остаточний результат, бо такі заміни реальних фігур здійснюються нехтуванням нескінченно малих величин вищих порядків. Цей факт можна було б строго довести.

Приклад . Еліпс із великою піввіссю  і малою піввіссю  робить один оберт навколо великої осі і вдруге – навколо малої осі. Визначити поверхню обертання еліпса в кожному з двох випадків.

Р о з в ‘ я з о к. Досить розглянути лише половину еліпса:

В результаті обертання навколо великої осі одержимо за (11.7)

де - ексцентриситет еліпса.

За допомогою підстановки матимемо

У випадку обертання навколо малої осі для обчислення поверхні обертання одержуємо інтеграл

В обох випадках поверхня еліпсоїда виразилась через елементарні функції.

Література для самоосвіти: [2], [4], [7], [9].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  Наверх ↑